Latest news and medical publications from AI Research in Medicine Cedars Sinai
Latest news and medical publications from AI Research in Medicine Cedars-Sinai Skip to content Close Select your preferred language English عربى 简体中文 繁體中文 فارسي עִברִית 日本語 한국어 Русский Español Tagalog English English عربى 简体中文 繁體中文 فارسي עִברִית 日本語 한국어 Русский Español Tagalog Translation is unavailable for Internet Explorer Cedars-Sinai Home 1-800-CEDARS-1 1-800-CEDARS-1 Close Find a Doctor Locations Programs & Services Health Library Patient & Visitors Community My CS-Link RESEARCH clear Go Close Navigation Links Academics Faculty Development Community Engagement Calendar Research Research Areas Research Labs Departments & Institutes Find Clinical Trials Research Cores Research Administration Basic Science Research Clinical & Translational Research Center (CTRC) Technology & Innovations News & Breakthroughs Education Graduate Medical Education Continuing Medical Education Graduate School of Biomedical Sciences Professional Training Programs Medical Students Campus Life Office of the Dean Simulation Center Medical Library Program in the History of Medicine About Us All Education Programs Departments & Institutes Faculty Directory Artificial Intelligence in Medicine Back to Artificial Intelligence in Medicine Current Research Faculty News & Publications Artificial Intelligence in Medicine Research News & Publications Cedars-Sinai's AI research has advanced understanding of risks for heart attack, heart disease and COVID-19 hospitalization. Read the latest findings. Selected Publications Duffy G, Cheng PP, Yuan N, He B, Kwan AC, Shun-Shin MJ, Alexander KM, Ebinger J, Lungren MP, Rader F, Liang DH, Schnittger I, Ashley EA, Zou JY, Patel J, Witteles R, Cheng S, Ouyang D. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning. JAMA Cardiol. 2022 Feb 23. doi: 10.1001/jamacardio.2021.6059. Kwiecinski J, Tzolos E, Meah MN, Cadet S, Adamson PD, Grodecki K, Joshi NV, Moss AJ, Williams MC, van Beek EJR, Berman DS, Newby DE, Dey D, Dweck MR, Slomka PJ. Machine Learning with 18F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction. J Nucl Med. 2022 Jan;63(1):158-165. Duffy, G., Cheng, P., Yuan, N., He, B., Kwan, A.C., Shun-shin, M.J., Alexander, K.M., Ebinger, J.E., Lungren, M.P., Rader, F., Liang, D.H., Schnittger, I., Ashley, E.A., Zou, J.Y., Patel, J.K., Witteles, R.M., Cheng, S., & Ouyang, D. High-Throughput Precision Phenotyping of Left Hypertrophy With Cardiovascular Deep Learning. 2021. ArXiv. abs/2106.12511. Yuan N, Jain I, Rattehalli N, He B, Pollick C, Liang D, Heidenreich P, Zou J, Cheng S, Ouyang D. Systematic Quantification of Sources of Variation in Ejection Fraction Calculation Using Deep Learning. JACC Cardiovasc Imaging. 2021 Nov;14(11):2260-2262. Hughes JW, Yuan N, He B, Ouyang J, Ebinger J, Botting P, Lee J, Theurer J, Tooley JE, Nieman K, Lungren MP, Liang DH, Schnittger I, Chen JH, Ashley EA, Cheng S, Ouyang D, Zou JY. Deep Learning Evaluation of Biomarkers From Echocardiogram Videos. EBioMedicine. 2021 Nov;73:103613. Ouyang D, Albert CM. Leveraging Large Clinical Data Sets for Artificial Intelligence in Medicine. JAMA Cardiol. 2021 Nov 1;6(11):1296-1297. Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How Medical AI Devices Are Evaluated: Limitations and Recommendations From an Analysis of FDA Approvals Nat Med. 2021 Apr;27(4):582-584. Nakanishi R, Slomka PJ, Rios R, Betancur J, Blaha MJ, Nasir K, Miedema MD, Rumberger JA, Gransar H, Shaw LJ, Rozanski A, Budoff MJ, Berman DS. Machine Learning Adds to Clinical and CAC Assessments in Predicting 10-Year CHD and CVD Deaths. JACC Cardiovasc Imaging. 2021 Mar;14(3):615-625. Kwiecinski J, Tzolos E, Meah MN, Cadet S, Adamson PD, Grodecki K, Joshi NV, Moss AJ, Williams MC, van Beek EJR, Berman DS, Newby DE, Dey D, Dweck MR, Slomka PJ. Machine-learning with 18F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med. 2022 Jan;63(1):158-165. Otaki Y, Singh A, Kavanagh P, Miller RJH, Parekh T, Tamarappoo BK, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Cadet S, Liang JX, Dey D, Berman DS, Slomka PJ. Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC Cardiovasc Imaging. 2021 Jul 7:S1936-878X(21)00438-1. Rios R, Miller RJH, Hu LH, Otaki Y, Singh A, Diniz M, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Van Kriekinge S, Kavanagh P, Parekh T, Liang JX, Dey D, Berman DS, Slomka P. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2021 Jul 14:cvab236. Ebinger J, Wells M, Ouyang D, Davis T, Kaufman N, Cheng S, Chugh S. A Machine Learning Algorithm Predicts Duration of hospitalization in COVID-19 patients. Intell Based Med. 2021;5:100035. In the News 2022 NHLBI Workshop on Artificial Intelligence in Cardiovascular Imaging: Translating Science to Patient Care, co-chair Damini Dey, PhD, NIH. 2022 June 27-28. Predicting Sudden Cardiac Arrest, Cedars-Sinai Newsroom. 2022 May 30. Artificial Intelligence Tool May Help Predict Heart Attacks, Cedars-Sinai Newsroom. 2022 Mar 22. Cedars-Sinai Establishes New Division: Artificial Intelligence in Medicine, Cedars-Sinai Newsroom. 2022 Mar 1. Have Questions or Need Help Pavilion, Suite 3100 127 S. San Vicente Blvd. Los Angeles, CA 90048 Maria Mirzakhanyan Project Coordinator 310-423-1206 SEND A MESSAGE Please ensure Javascript is enabled for purposes of website accessibility